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An explicit analytical formula is given for the overall mass transfer coefficient between the bulk of
flowing microdisperse liquid and a small but finite active part of a solid surface. The apparent wall
slip effect inside a diffusion layer is reflected through the local power-law velocity profile,
vx(z) = Bzp, and a distribution B = B(x,y) over the solid surface.
Key words: Diffusion layer; Microdisperse liquids; Apparent wall slip.

The theory of a small heat or mass transfer probe, embedded in an inactive body or wall
in a stream of liquid, provides a common basis for various experimental techniques:
thermal anemometers1 (mainly for the bulk velocity measurements), electrodiffusion
sensors2 (mainly for the wall friction measurements), and electroanalytical measure-
ments in flowing liquids3 (mainly for the concentration measurements under conditions
of limiting diffusion currents). All the mentioned references deal with flows of micro-
homogeneous Newtonian liquids. This means that they all are limited to linear velocity
profiles close to the probe surface, represented locally by a single quantity, the wall
shear rate. The classic result4, which considers unidirectional flows with the constant
shear rate, was generalized to planar5 and axisymmetric6,7 flows with one-dimensional
distributions of the wall shear rate, tacitly assuming the same symmetry of the probe
territory. This approach was generalized8 for any three-dimensional flow of Newtonian
liquids and any shape of the probe. In the present paper, this approach is further gener-
alized for a class of non-linear profiles close to the wall which appear in the theory of
apparent wall slip effects9–11. The theory is based on an idea recently sketched by the
author9.

THEORETICAL

Recently it has been argued10,11 that, for any actual velocity profile vx = u(z) close the
probe surface, a systematic theory of convective diffusion for a class of mass transfer
probes can be based on a power-law representation of the velocity profiles,

u(z) = Bzp  . (1)
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For a series of the probes with known transport lengths h and mass transfer coefficients k,
the parameters B, p can be adjusted in the following way:

p = 



d ln u
d ln z



z=0.4δ

 =  
d ln h
d ln δ − 2  , (2)

B = 




du(z)
dzp



z=0.4δ

 =  
0.8hD

0.4p δ2+p  , (3)

where δ = D/k stands here for the mean diffusion layer thickness, available, e.g., from
electrodiffusion experiments10.

Basic theory11 of convective diffusion with a space-independent power-law velocity
profile, i.e., in unidirectional viscometric flows with constant shear stress at the wall,
was generalized12 to include the transport configurations with planar symmetry. How-
ever, only a local distribution of mass transfer coefficients was given. A general theory
for any surface distribution B = B(x,y) at constant p is given here for the first time.

Problem Statement in the Diffusion-Layer Approximation

The mathematical problem8 of steady convective diffusion from the bulk of a flowing
liquid to the probe, i.e., a small active surface A embedded in an inactive wall N (see
Fig. 1) consists of the transport equation for an active component, v ⋅ ∇c = D ∇2c, with
a given coefficient of diffusion D and a velocity field v = v(r), accompanied by several
boundary conditions which express:

1. the existence of the bulk liquid far away from the probe,

c → cb          for  |r| → ∞  , (4a)

z vx = B(x)zp

x = h
x = 0

µ dθ

θ = constdx
A

N

FIG. 1
Natural coordinates for the equation of con-
vective diffusion. A Probe surface; N inert
surface in a probe neighbourghood; z normal
coordinate; x local longitudinal coordinate
starting in the local forward edge on a given
surface streamline; θ lateral coordinate: θ = const,
z = 0 (corresponds to a surface streamline); µ
metric coefficient of the mapping from Carte-
sian to natural coordinates, dA = µ dθ dx
gives the area differential
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2. the limiting diffusion conditions at the probe surface,

c = 0             for  r ∈ A  , (5a)

3. the zero-flux condition across the inert neighbouring surface,

nN⋅∇c = 0     for  r ∈ N  . (6a)

Solving this problem, one obtains the concentration profile, c = c(r), and the corre-
sponding surface distribution of the local mass transfer coefficients,

k(r) = DnN⋅∇c/cb ,     r ∈ A  , (7)

which is, in the next step, integrated over the probe surface A to provide the total
(surface averaged) mass transfer coefficient of the probe,

k
_
 = A−1 ∫∫ k

A
(r) dA(r)  . (8)

The diffusion-layer approximation to this problem, in analogy to well-known boundary-
layer theories of flow and heat transfer, assumes that the mass transfer resistance is
concentrated in a thin layer close to the probe13. Using the common scaling arguments,
as suggested by Prandtl, the only diffusion term is preserved which represents the dif-
fusion flux normal to the surface. Assuming also the curvature of the probe surface to
be negligible comparing with the local diffusion layer thickness δ = D/k as a local
length scale, and choosing appropriate curvilinear orthogonal coordinates8, the trans-
port equation for the concentration field c(x,z,θ) can be written in a parabolic form

vx ∂xc + vz ∂zc = D ∂zz
2 c  . (9)

The transversal coordinate θ does not enter this equation in an explicit way as the
direction ex  by definition as the local flow direction close to the surface. In other
words, the line (θ = const, z = 0) corresponds to a surface streamline and θ is a par-
ameter in description of the non-zero velocity components vx = vx(x,z,θ), vz = vz(x,z,θ)
along this streamline. The continuity equation in the boundary-layer approximation for
a smooth surface can be written in the form8

∂x(µvx) + µ ∂zvz + 0  , (10a)
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where the metric coefficient µ = µ(x,θ) specifies also the local differential area in the
new coordinates,

dA(x,θ) = µ(x,θ) dx dθ  . (11)

Let us assume the local profiles of longitudinal velocity in the form suggested in Eq. (1),

vx(x,z,θ) = B(x,θ)zp  , (12)

with a constant exponent p. The continuity equation (10a) can be integrated to provide
the profile of normal velocity component,

vz(x,z,θ) = −(1 + p)−1 B(x,θ) ∂x ln [µ(x,θ)B(x,θ)] zp+1 (10b)

and the corresponding form of the equation of convective diffusion:

Bzp 


∂x − (1 + p)−1 ∂x ln (µB) z ∂z




c = D ∂zz

2 c  . (13)

This is a two-dimensional parabolic equation, which cannot satisfy the complete set of
boundary conditions (4a), (5a), (6a) accompanying the original elliptic three-dimen-
sional problem. Since the two-dimensional domain under consideration is a semi-infi-
nite quadrant x > 0, z > 0, the modified boundary conditions are

c → cb        for  z → ∞  and  x > 0  , (4b)

c = 0           for  z = 0  and  x > 0  , (5b)

c → cb        for  z > 0  and  xµB → 0  . (6b)

The set (4b)–(6b) implies a singularity at the starting point (x = 0, z = 0) with a discon-
tinuous change of the concentration from 0 to cb.
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Similarity Solution to the Problem

The transport equation (13) with the boundary conditions (4b)–(6b) allows an exact
solution in the similarity form

c(x,z,θ)/cb = C(w) ;     w = z/δ(x,θ)  . (14)

The similarity concentration profile C(w) is a solution to the second-order linear dif-
ferential equation with an indetermined constant m,

C′(w) + qmw1+pC′′(w) = 0 ,        q ≡ 1/(2 + p)  , (15a, 15b)

and the boundary conditions

C(0) = 0 ,     C(∞) = 1 ,     C′(0) = 1  . (16a–16c)

From the solution,

C(w) = ∫  
0

w

exp (−mq2s2+p) ds (17)

and the normalizing condition (16c), it follows:

1 = ∫  
0

∞
exp (−mq2s2+p) ds = Γ(1 + q)/(mq2)q  . (18)

The local diffusion layer thickness δ(x,θ) along a surface streamline θ = const is a
solution to the first-order non-linear differential equation,

mqD dx = B(x) δ2+p(x) [d ln δ(x) + 
1

1 + p
 d ln (µ(x)B(x))]  , (19)

with the initial condition

µBδ1+p → 0        for  x → 0  . (20)
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For probes with a forward critical point, B = 0, lying on their territory A, the initial
diffusion layer thickness can be non-zero. In a more common case, with the forward
edge, x = 0, lying on a single surface streamline, B > 0, the initial diffusion layer thick-
ness is zero. The resulting longitudinal profiles of the local mass transfer coefficient
along individual surface streamlines, θ = const, can be expressed analytically:

k(x,θ) ≡ D/δ(x,θ) = D1−q [µ(x,θ)B(x,θ)]q/(1−q)/[Q(x,θ)]q  , (21)

Q(x,θ) ≡ m∫ µ1/(1−q)
0

x

(ξ,θ)Bq/(1−q)(ξ,θ) dξ  . (22)

Some authors7,14 who have presented various modifications and generalizations of
the original Lighthill’s theory overlooked a chance to obtain an analytical expression
also for the total fluxes and the corresponding mean mass transfer coefficients. For a
simple (single-segment) probe, the resulting formula follows from Eqs (21) and (22):

Ak
_
 ≡ ∫ k(x,

A
θ) dA(x,θ) = 

D1−q

(1 − q)m ∫ Q1−q

θ∈A
[h(θ),θ] dθ  , (23)

h(q) standing for the geodetic lengths, 0 < x < h(θ), of individual surface streamlines on
the probe territory, (x,θ) ∈ A. Note that, with the present formalism, the probe area is
given as

A ≡ ∫ d
A

A(x,θ) = ∫ d
θ∈A

θ ∫ µ
0

h(θ)
(x,θ) dx  . (24)

For multi-segmented probes, the theory can easily be modified by applying the ap-
proach described in our preceding communication8.

RESULTS AND DISCUSSION

The resulting formulas (21)–(23) cover all the cases of steady-state convective diffu-
sion studied so far within the diffusion layer (i.e., the concentration boundary layer)
approximation:

1. for p = 1 (i.e., q = 1/3), they correspond to the general case of Newtonian liquids8,
2. for m = const, they correspond to a rectilinear viscometric flow with a constant

non-linear velocity profile according to ref.12, see Eq. (1),
3. for µ = r(x), where r gives the local radius of an axisymmetric surface with an

embedded axisymmetric probe (e.g., a pole electrode on rotating sphere or a ring elec-
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trode on a rotating disk) surrounded in a flowing microdisperse liquid with axisymme-
tric velocity field, the local mass transfer coefficients were given in ref.14. The corre-
sponding total mass transfer coefficients for an axisymmetric probe of a constant
geodetic length h (see Fig. 2) can simply be deduced from Eq. (21):

Ak
_
 = 

D1−q

(1 − q)m 2π



m∫  

0

h

[r2+p(x)B(x)]1/(1+p) dx




1−q

 . (25)

4. A particular case of planar convective diffusion under ideal slip conditions, p = 0,
was mentioned in a study15 of unsteady heat transfer of liquid metals.

An interesting question16 arises about a general kinematic condition of the uniformly
accessible configurations, with constant diffusion layer thickness and local mass trans-
fer coefficients, k(x) = k = const. It follows from Eqs (21) and (22) that, even under the
apparent wall slip conditions, there is a sufficient condition for uniform accessibility in
the form

B    µ−1∫ µ
0

x

 dx  . (26)

The diffusion-layer approximation to a complete theory of convective diffusion is
often characterized as an asymptotic theory for a large Schmidt number. This is correct
only for convective diffusion to a body in an external flow at a high Reynolds number,
when the diffusion layer is located inside the hydrodynamic boundary layer. In general,
the local transport regime for a heat/mass transfer microprobe of length h in a Newto-
nian fluid is characterized by the modified Peclet number, Pe = h2γ

.
/D. For the power-

law velocity profiles, this dimensionless criterion can be generalized, e.g., to Pe =
(h/λ)1+p, where λ is a length parameter. A recent study17 of the convective diffusion in
microdisperse liquids at low Pe has shown that the effect of longitudinal diffusion is of

~

z

vx

µ dθ

θ

x

r

dx
FIG. 2

Natural coordinates for completely axisymme-
tric problems. z Normal coordinate; θ azimuthal
(angular) coordinate; x longitudinal coordinate
along an axisymmetric body, the length of a
surface streamline from the critical point or the
forward edge line; r polar radius; µ = r metric
coefficient, dA = r dθ dx
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some importance close to the probe boundaries, within a narrow boundary band of
depth λ in streamwise direction and δ in lateral direction. For a rectangular wall mass
transfer probe of length h and width w, the relative effect of spatial diffusion at suffi-
ciently high H = h/λ can be represented by the asymptotic formula17

k
_

corr/k
_

diff ≈ 1 + (w/h)αS H
−(1−q) + αFT H

−1 − 0.06H−2(1−q)  , (27)

where

αS = 0.276 – 0.038(1 – p) – 0.016(1 – p)2 , (28)

αFT = [0.0705 − 0.0080(1 − p)4](1 + p) + 0.153 − 0.072(1 − p) − 0.018(1 − p)2  . (29)

As it is obvious from this asymptotic formula for H → ∞, the transversal effect, αS H
–(1–q),

is asymptotically stronger than the remaining (longitudinal) ones.
Unfortunately, the theory in its present form is merely descriptive, i.e., it predicts the

mass transfer response for an a priori assumed velocity field in the diffusion layer. For
its efficient application, a class of rheodynamical problems should be solved with the
implied apparent wall slip condition at walls. Such solutions are only known for vis-
cometric flows with constant shear stress at wall, see, e.g., ref.12. Only recently18, an
analogous problem was formulated correctly for a general class of viscometric flows
and actually solved for the case of generalized torsional flows.

SYMBOLS

A surface and area of the probe, m2

B magnitude parameter of the velocity profile (1), m1–p s–1

c concentration field of depolarizer, mol m–3

cb bulk value of c, mol m–3

D diffusion coefficient for depolarizer, m2 s–1

ex, ez, eθ base of the natural coordinates {x,z,θ}
h transport length of the probe, m
k local mass transfer coefficient, m s–1

k total (surface-averaged) mass transfer coefficient, m s–1

m = q−2 Γ1/q(1 + q)
n unit vector normal to the solid surface
N inactive solid surface around the probe
p form parameter of the velocity profile (1), 0 ≤ p ≤ 1
q = 1/(2 + p)
Q an auxiliary integral, Eq. (22)
r local radius of an axisymmetric probe, m
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r radius vector, m
u(z) velocity profile close to the wall, m s–1

v velocity field, m s–1

vx longitudinal velocity component, m s–1

x longitudinal coordinate, m
z normal-to-surface coordinate, m
γ
.

wall shear rate, s–1

δ local diffusion layer thickness, m
δ mean (Nernst) diffusion thickness, m
θ lateral coordinate
λ = [(2 + p)2D/B]1/(1+p), characteristic internal length within diffusion layer, m
µ metric coefficient of the natural coordinates {x,z,θ}
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