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DIFFUSION-LAYER THEORY FOR FLOWS UNDER APPARENT WALL SLIP
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An explicit analytical formula is given for the overall mass transfer coefficient between the bu
flowing microdisperse liquid and a small but finite active part of a solid surface. The apparen
slip effect inside a diffusion layer is reflected through the local power-law velocity pro
v,(2) = BZ, and a distributiorB = B(x,y) over the solid surface.
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The theory of a small heat or mass transfer probe, embedded in an inactive body
in a stream of liquid, provides a common basis for various experimental techni
thermal anemometergmainly for the bulk velocity measurements), electrodiffusi
sensoré (mainly for the wall friction measurements), and electroanalytical meas
ments in flowing liquidd(mainly for the concentration measurements under conditi
of limiting diffusion currents). All the mentioned references deal with flows of mic
homogeneous Newtonian liquids. This means that they all are limited to linear ve
profiles close to the probe surface, represented locally by a single quantity, the
shear rate. The classic re$ulvhich considers unidirectional flows with the conste
shear rate, was generalized to plirard axisymmetrit’ flows with one-dimensional
distributions of the wall shear rate, tacitly assuming the same symmetry of the
territory. This approach was generali¢éat any three-dimensional flow of Newtonia
liquids and any shape of the probe. In the present paper, this approach is further
alized for a class of non-linear profiles close to the wall which appear in the thec
apparent wall slip effects'y The theory is based on an idea recently sketched by
authof.

THEORETICAL

Recently it has been argué€d!that, for any actual velocity profile, = u(2) close the
probe surface, a systematic theory of convective diffusion for a class of mass tr
probes can be based on a power-law representation of the velocity profiles,

u2 =B2 . @
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Diffusion-Layer Theory 133

For a series of the probes with known transport lengtrsd mass transfer coefficierkts
the parameterB, p can be adjusted in the following way:

_ dInuO _ dinh
P= dinz{ .~ dins 2 @)
du(2O _ 0.&nD

D - " ' (3)
2 6, 0437

whered = D/k stands here for the mean diffusion layer thickness, availalge from
electrodiffusion experiment$

Basic theory! of convective diffusion with a space-independent power-law velo
profile, i.e., in unidirectional viscometric flows with constant shear stress at the
was generalizéd to include the transport configurations with planar symmetry. He
ever, only a local distribution of mass transfer coefficients was given. A general t
for any surface distributioB = B(x,y) at constanp is given here for the first time.

Problem Statement in the Diffusion-Layer Approximation

The mathematical probléhof steady convective diffusion from the bulk of a flowir
liquid to the probej.e., a small active surfac& embedded in an inactive wall (see
Fig. 1) consists of the transport equation for an active compongnt = D 0%, with
a given coefficient of diffusio® and a velocity fields = v(r), accompanied by severe
boundary conditions which express:

1. the existence of the bulk liquid far away from the probe,

cocb for | - o , “4aq)

Fic. 1
Natural coordinates for the equation of con- A A .

vective diffusion.A Probe surfaceN inert 1, S
surface in a probe neighbourghoadnormal N Suauny B F

coordinate;x local longitudinal coordinate 7/ = flln

starting in the local forward edge on a given / ," e SN
surface streamlind lateral coordinated = const, Frdx L 6 = const
z = 0 (corresponds to a surface streamline); "
metric coefficient of the mapping from Cartef
sian to natural coordinatesAd= pdodx F T I R
gives the area differential ' ’
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2. the limiting diffusion conditions at the probe surface,

c=0 forr DA , (a)
3. the zero-flux condition across the inert neighbouring surface,

nyMc=0 forrON . (6a)

Solving this problem, one obtains the concentration profile, c(r), and the corre-
sponding surface distribution of the local mass transfer coefficients,

k(r) =DnyDc/®, rOA, @

which is, in the next step, integrated over the probe suate provide the total
(surface averaged) mass transfer coefficient of the probe,

k=At J'Ak(r) dA(r) . ®)

The diffusion-layer approximation to this problem, in analogy to well-known bound
layer theories of flow and heat transfer, assumes that the mass transfer resist
concentrated in a thin layer close to the ptédbdsing the common scaling argument
as suggested by Prandtl, the only diffusion term is preserved which represents t
fusion flux normal to the surface. Assuming also the curvature of the probe surfe
be negligible comparing with the local diffusion layer thicknéss D/k as a local
length scale, and choosing appropriate curvilinear orthogonal coordjnisiedrans-
port equation for the concentration fied(k,z0) can be written in a parabolic form

v, 0,c+Vv,0,c=D d2¢ . )

The transversal coordinat® does not enter this equation in an explicit way as
directione, by definitionas the local flow direction close to the surface. In otl
words, the line § = const,z= 0) corresponds to a surface streamline @nsl a par-
ameter in description of the non-zero velocity componentsv,(x,z,0), v, = V,(x,z0)
along this streamline. The continuity equation in the boundary-layer approximatic
a smooth surface can be written in the form

O(Mv) + 1 0N, + 0 103
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where the metric coefficient = p(x,0) specifies also the local differential area in tl
new coordinates,

dA(x,0) = u(x,0) dx do . 1y
Let us assume the local profiles of longitudinal velocity in the form suggested i) Ec
v(x,28) =B(x,0)Z , @2

with a constant exponept The continuity equationlQa) can be integrated to provid
the profile of normal velocity component,

V,(X,2,0) = =(1 + p) "L B(x,0) 0, In [(x,0)B(x,0)] Z** (10b)
and the corresponding form of the equation of convective diffusion:
B2 0, - (1+p)™"d,In(uB)zd,c=D dg . @3

This is a two-dimensional parabolic equation, which cannot satisfy the complete
boundary conditions4@), (5a), (6a) accompanying the original elliptic three-dimel
sional problem. Since the two-dimensional domain under consideration is a sem
nite quadrank > 0,z > 0, the modified boundary conditions are

c-cb forz — o andx>0 , @b)
c=0 forz=0 andx>0 , 6b)
c-cP forz>0 andxuB - O . ©b)

The set 4b)—(6b) implies a singularity at the starting poimt< 0,z = 0) with a discon-
tinuous change of the concentration from @%o
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Similarity Solution to the Problem

The transport equatiorl®) with the boundary conditiongtf)—(6b) allows an exact
solution in the similarity form

c(xz0)/c®P=C(w); w=zB(x0) . 14)

The similarity concentration profil€(w) is a solution to the second-order linear d
ferential equation with an indetermined constant

C'(w) +gmw*C’(w)=0, q=1/(2+p) , (154, 15b)
and the boundary conditions
C0)=0, C(o)=1, C0O=1. (L6a—16¢
From the solution
W
C(w) = j exp(-mofs**P) ds (17)
0
and the normalizing conditiori§0), it follows:
1=] exp(-mcfs*P) ds=T (L +a)/(mc)° . (18)
0

The local diffusion layer thicknes¥x,0) along a surface streamlire = const is a
solution to the first-order non-linear differential equation,

mgDdx = B(X) 3**P(X) [d In d(x) + 1 i o dIn(U(X)BX))] , (19

with the initial condition

uBd** _ 0 forx — 0 . @0)
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For probes with a forward critical poinB = 0, lying on their territoryA, the initial
diffusion layer thickness can be non-zero. In a more common case, with the fo
edgex =0, lying on a single surface streamliBe; 0, the initial diffusion layer thick-
ness is zero. The resulting longitudinal profiles of the local mass transfer coeffi
along individual surface streamlinégs= const can be expressed analytically:

k(x.8) = D/5(x,8) = D9 [u(x,0)B(x,8)] ¥ D[ Q(x,0)]% , @1)

Q@@Eﬂymﬂ@mmﬂmﬁm&. @2

Some authors* who have presented various modifications and generalizatior
the original Lighthill's theory overlooked a chance to obtain an analytical expre:s
also for the total fluxes and the corresponding mean mass transfer coefficients.
simple (single-segment) probe, the resulting formula follows from Efjsand @2):

D1
(1-gm

Ak= J'Ak(x,e) dA(x,68) = | SDAQl‘q[h(O),G] de , @3

h(g) standing for the geodetic lengths, & < h(0), of individual surface streamlines o
the probe territory,x(8) O A. Note that, with the present formalism, the probe are
given as

h(e)
A= jAdA(x,e): jeDAde jo u(x,0) dx . (24)

For multi-segmented probes, the theory can easily be modified by applying th
proach described in our preceding communic&tion

RESULTS AND DISCUSSION

The resulting formulas2()—-(23) cover all the cases of steady-state convective di
sion studied so far within the diffusion layere(, the concentration boundary laye
approximation:

1. forp=1 (.e., g= 1/3), they correspond to the general case of Newtonian Ifjui

2. for m = const, they correspond to a rectilinear viscometric flow with a cons
non-linear velocity profile according to r&f. see Eq. 1),

3. for u =r(x), wherer gives the local radius of an axisymmetric surface with
embedded axisymmetric probe.q, a pole electrode on rotating sphere or a ring el
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trode on a rotating disk) surrounded in a flowing microdisperse liquid with axisyn
tric velocity field, thelocal mass transfer coefficients were given in¥efThe corre-
sponding total mass transfer coefficients for an axisymmetric probe of a cor
geodetic lengthn (see Fig. 2) can simply be deduced from BEq):(

- qu . N —a
A= 5 o 2, [PPOBIIE 6T @9

4. A particular case of planar convective diffusion under ideal slip conditiong),
was mentioned in a stuthof unsteady heat transfer of liquid metals.

An interesting questidfiarises about a general kinematic condition of the uniforr
accessible configurations, with constant diffusion layer thickness and local mass
fer coefficientsk(x) = k = const. It follows from Eqs2(l) and @2) that, even under the
apparent wall slip conditions, there is a sufficient condition for uniform accessibili
the form

B~ p-lj'op dx . (26)

The diffusion-layer approximation to a complete theory of convective diffusio
often characterized as an asymptotic theory for a large Schmidt number. This is c
only for convective diffusion to a body in an external flow at a high Reynolds nun
when the diffusion layer is located inside the hydrodynamic boundary layer. In ge
the local transport regime for a heat/mass transfer microprobe of lemgth Newto-
nian fluid is characterized by the modified Peclet numBers h?y/D. For the power-
law velocity profiles, this dimensionless criterion can be generalzed,to Pe =
(h/A)1*, whereA is a length parameter. A recent stifdyf the convective diffusion in
microdisperse liquids at loRe has shown that the effect of longitudinal diffusion is

Fic. 2

Natural coordinates for completely axisymme
tric problems.z Normal coordinatef azimuthal
(angular) coordinatex longitudinal coordinate
along an axisymmetric body, the length of
surface streamline from the critical point or th
forward edge liner polar radiusy =r metric
coefficient, dA = r do dx
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some importance close to the probe boundaries, within a narrow boundary be
depthA in streamwise direction andlin lateral direction. For a rectangular wall ma
transfer probe of length and widthw, the relative effect of spatial diffusion at suff
ciently highH = h/A can be represented by the asymptotic forffula

Koorfkgist = 1+ (WIh)ag H09 + o H — 0,084 2090 @7)
where

0= 0.276 — 0.038(1 p) — 0.016(1 )2, 28)

0gr = [0.0705- 0.008@1 - p)*|(1 + p) + 0.153- 0.0721 - p) - 0.01§1 - p)? . (29)

As it is obvious from this asymptotic formula fdr— oo, the transversal effeag H9,
is asymptotically stronger than the remaining (longitudinal) ones.

Unfortunately, the theory in its present form is merely descripitieg it predicts the
mass transfer response forapriori assumed velocity field in the diffusion layer. Fe
its efficient application, a class of rheodynamical problems should be solved wit
implied apparent wall slip condition at walls. Such solutions are only known for
cometric flows with constant shear stress at wall, seg, ref!2 Only recently?, an
analogous problem was formulated correctly for a general class of viscometric
and actually solved for the case of generalized torsional flows.

SYMBOLS

surface and area of the prob& m

magnitude parameter of the velocity profilg, (m'® s
concentration field of depolarizer, mol#n

bulk value ofc, mol nT3

diffusion coefficient for depolarizer, fs

base of the natural coordinatesZp}

transport length of the probe, m

local mass transfer coefficient, mts

total (surface-averaged) mass transfer coefficient;'m s
=q2r9L+q)

unit vector normal to the solid surface

inactive solid surface around the probe

form parameter of the velocity profild)(0<sp<1
=1/(2 +p)

an auxiliary integral, Eq.2Q)

local radius of an axisymmetric probe, m

Qo w >

@
2

_‘,O_Q'OZ:SBWIW:YQU
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radius vector, m

u(z) velocity profile close to the wall, nT%s

= > oo <rN X £ <

© 00 ~NO O b

10.
11.

12.
13.
14.

15.
16.
17.
18.

velocity field, m st

longitudinal velocity component, nt's

longitudinal coordinate, m

normal-to-surface coordinate, m

wall shear rate, 3

local diffusion layer thickness, m

mean (Nernst) diffusion thickness, m

lateral coordinate

= [(2 + p)2D/B)Y(1*0) characteristic internal length within diffusion layer, m
metric coefficient of the natural coordinatesz{t}
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